当前位置:首页 >> 跨学科知识体系 >> 【rust语言】rust多态实现方式,不见不散便携音箱(rust里面的音响)

【rust语言】rust多态实现方式,不见不散便携音箱(rust里面的音响)

cpugpu芯片开发光刻机 跨学科知识体系 1
文件名:【rust语言】rust多态实现方式,不见不散便携音箱 【rust语言】rust多态实现方式

文章目录 前言一、多态二、rust实现多态trait的静态方式还有一种方式可以通过动态分发,还以上面那段代码,比如dyn关键字 泛型方式枚举方式优点:缺点: 总结


前言

学习rust当中遇到了这个问题,记录一下,不对地方望指正

一、多态

多态是面向对象程序设计中的一个重要概念,指同一个行为或操作在不同实例上具有不同的行为或结果。简单来说,多态就是指同一种类型的对象,在不同的上下文中有不同的行为。多态性使得程序可以更加灵活、可扩展和易于维护。在实现多态性时,通常会使用继承、接口、抽象类等技术

二、rust实现多态 trait的静态方式 trait Animal {fn make_sound(&self);}struct Cat {}impl Animal for Cat {fn make_sound(&self) {println!("Meow");}}struct Dog {}impl Animal for Dog {fn make_sound(&self) {println!("Woof");}}fn main() {let cat: Cat = Cat {};let dog: Dog = Dog {};test(cat);test(dog)}//接受Animal Trait类型的fn test(animal : impl Animal){animal.make_sound()}

定义了方法传入参数是trait。这一种在实例化的时候是具体的类型,在传参的时候编译器能推断出来具体是cat还是dog,能调用具体方法

还有一种方式可以通过动态分发,还以上面那段代码,比如 trait Animal {fn make_sound(&self);}struct Cat {}impl Animal for Cat {fn make_sound(&self) {println!("Meow");}}struct Dog {}impl Animal for Dog {fn make_sound(&self) {println!("Woof");}}fn main() {let cat: Box<dyn Animal> = Box::new(Cat {});let dog: Box<dyn Animal> = Box::new(Dog {});test(cat);test(dog)}fn test(animal: Box<dyn Animal>) {animal.make_sound()}

这种方式相对于上面更加灵活,因为实例化参数变量类型是trait类型。现在说说关键点

dyn关键字

dyn关键字是在Rust中用于创建和使用动态分发的trait对象的关键字。trait对象允许我们以统一的方式处理不同类型的对象,并使用相同的方法调用语法。使用动态分发,编译器无需在编译时知道具体的类型,而是在运行时根据对象的实际类型来确定要调用的方法。要创建一个trait对象,需要在trait名称前加上dyn关键字。例如,对于名为TraitName的trait,我们可以使用dyn TraitName来创建一个trait对象。

trait TraitName {// trait定义}fn main() {let trait_obj: Box<dyn TraitName> = Box::new(ConcreteType);// 在这里使用trait对象}

在上面的代码中,trait_obj是一个Box指向动态分发的trait对象的指针。它可以存储实现了TraitName trait的任何具体类型的对象。通过dyn关键字,我们可以在运行时根据实际类型来调用trait定义的方法。 这里要注意,trait对象通过指针或引用来操作,因此通常结合使用Box、&或&mut来创建和使用trait对象。为了在运行时确定对象的大小,我们需要将它们放置在一个固定大小的容器中。这就是为什么要使用Box来包装trait对象的原因。Box类型表示一个动态分发的trait对象。它在堆上分配一块内存,该内存用于存储对象的数据,并提供一个指向虚函数表(vtable)的指针,该表用于在运行时查找和调用正确的方法。 这种方式相对于静态方式会更加灵活,但会有运行时性能损失,看情况决定使用哪一种

泛型方式 use std::fmt::{Display, Formatter};struct Cat {}struct Dog {}impl Display for Cat{fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {write!(f,"Cat")}}impl Display for Dog{fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {write!(f,"Dog")}}fn make_sound<T: Display>(animal: T) {println!("{}", animal);}fn main() {make_sound(Cat{});make_sound(Dog{});}

通过在函数签名中使用泛型类型参数,函数可以接受不同类型的参数,并在编译时生成对应的具体化代码。这种方式不依赖于trait,而是基于类型推断和编译时的静态分发

枚举方式

还有一种方式是使用枚举方式,例如

enum Shape {Circle(f64),Square(f64),Rectangle(f64, f64),}impl Shape {fn area(&self) -> f64 {match *self {Shape::Circle(radius) => std::f64::consts::PI * radius * radius,Shape::Square(side_length) => side_length * side_length,Shape::Rectangle(length, width) => length * width,}}}fn main() {let circle = Shape::Circle(5.0);let square = Shape::Square(4.0);let rectangle = Shape::Rectangle(3.0, 6.0);test(circle);test(square);test(rectangle);}fn test(shape: Shape) {println!("shape area: {}", shape.area());}

枚举在实现多态性方面有一些优点和缺点。以下是其中的一些:

优点:

简洁性:枚举提供了一种紧凑的方式来定义和组织具有不同变体的数据类型。它能够在一个地方集中描述和管理多种可能的状态或情况。 静态类型检查:由于枚举的变体是预先定义的,编译器可以在编译时验证变体的正确性。这可以帮助捕捉到潜在的错误,并提供类型安全性。 模式匹配:枚举与模式匹配相结合,可以使代码更具表达力和可读性。模式匹配可以根据具体的变体类型执行相应的逻辑,同时处理所有可能的情况,避免遗漏。

缺点:

限制的扩展性:当需要添加新的变体时,枚举需要进行修改。这可能涉及到修改已有的代码,以适应新的变体。这对于外部库或包的枚举类型来说尤其困难,因为无法直接修改其定义。 冗余的结构:枚举的每个变体都可以存储不同的数据结构,这可能会导致某些变体拥有与其他变体不相关的冗余数据。这可能会浪费内存空间,尤其是当只使用其中的一部分变体时。 灵活性的限制:枚举要求提前定义所有可能的变体。如果需要在运行时动态添加新的变体,或者处理不确定的类型集合,那么枚举可能不适合。

总结

以上就是今天要说的内容,不对的地方望指正

协助本站SEO优化一下,谢谢!
关键词不能为空
同类推荐
«    2025年12月    »
1234567
891011121314
15161718192021
22232425262728
293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接