学习参考来自
CNN可视化Convolutional Featureshttps://github.com/wmn7/ML_Practice/blob/master/2019_05_27/filter_visualizer.ipynb文章目录 filter 的激活值
filter 的激活值
原理:找一张图片,使得某个 layer 的 filter 的激活值最大,这张图片就是能被这个 filter 所检测的对象。
来个案例,流程:
初始化一张图片, 56X56使用预训练好的 VGG16 网络,固定网络参数;若想可视化第 40 层 layer 的第 k 个 filter 的 conv, 我们设置 loss 函数为 (-1*神经元激活值);梯度下降, 对初始图片进行更新;对得到的图片X1.2, 得到新的图片,重复上面的步骤;其中第五步比较关键,我们可以看到初始化的图片不是很大,只有56X56. 这是因为原文作者在实际做的时候发现,若初始图片较大,得到的特征的频率会较高,即没有现在这么好的显示效果。
import torchfrom torch.autograd import Variablefrom PIL import Image, ImageOpsimport torchvision.transforms as transformsimport torchvision.models as modelsimport numpy as npimport cv2from cv2 import resizefrom matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")"initialize input image"sz = 56img = np.uint(np.random.uniform(150, 180, (3, sz, sz))) / 255 # (3, 56, 56)img = torch.from_numpy(img[None]).float().to(device) # (1, 3, 56, 56)"pretrained model"model_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()# downloading /home/xxx/.cache/torch/hub/checkpoints/vgg16_bn-6c64b313.pth, 500M+# print(model_vgg16)# print(len(list(model_vgg16.children()))) # 44# print(list(model_vgg16.children()))"get the filter's output of one layer"# 使用hook来得到网络中间层的输出class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()layer = 42activations = SaveFeatures(list(model_vgg16.children())[layer])"backpropagation, setting hyper-parameters"lr = 0.1opt_steps = 25 # 迭代次数filters = 265 # layer 42 的第 265 个 filter,使其激活值最大upscaling_steps = 13 # 图像放大次数blur = 3upscaling_factor = 1.2 # 放大倍率"preprocessing of datasets"cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)cnn_normalization_std = torch.tensor([0.299, 0.224, 0.225]).view(-1, 1, 1).to(device)"gradient descent"for epoch in range(upscaling_steps): # scale the image up up_scaling_steps timesimg = (img - cnn_normalization_mean) / cnn_normalization_stdimg[img > 1] = 1img[img < 0] = 0print("Image Shape1:", img.shape)img_var = Variable(img, requires_grad=True) # convert image to Variable that requires grad"optimizer"optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6)for n in range(opt_steps):optimizer.zero_grad()model_vgg16(img_var) # forwardloss = -activations.features[0, filters].mean() # max the activationsloss.backward()optimizer.step()"restore the image"print("Loss:", loss.cpu().detach().numpy())img = img_var * cnn_normalization_std + cnn_normalization_meanimg[img>1] = 1img[img<0] = 0img = img.data.cpu().numpy()[0].transpose(1,2,0)sz = int(upscaling_factor * sz) # calculate new image sizeimg = cv2.resize(img, (sz, sz), interpolation=cv2.INTER_CUBIC) # scale image upif blur is not None:img = cv2.blur(img, (blur, blur)) # blur image to reduce high frequency patternsprint("Image Shape2:", img.shape)img = torch.from_numpy(img.transpose(2, 0, 1)[None]).to(device)print("Image Shape3:", img.shape)print(str(epoch), ", Finished")print("="*10)activations.close() # remove the hookimage = img.cpu().clone()image = image.squeeze(0)unloader = transforms.ToPILImage()image = unloader(image)image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)cv2.imwrite("res1.jpg", image)torch.cuda.empty_cache()"""Image Shape1: torch.Size([1, 3, 56, 56])Loss: -6.0634975Image Shape2: (67, 67, 3)Image Shape3: torch.Size([1, 3, 67, 67])0 , Finished==========Image Shape1: torch.Size([1, 3, 67, 67])Loss: -7.8898916Image Shape2: (80, 80, 3)Image Shape3: torch.Size([1, 3, 80, 80])1 , Finished==========Image Shape1: torch.Size([1, 3, 80, 80])Loss: -8.730318Image Shape2: (96, 96, 3)Image Shape3: torch.Size([1, 3, 96, 96])2 , Finished==========Image Shape1: torch.Size([1, 3, 96, 96])Loss: -9.697872Image Shape2: (115, 115, 3)Image Shape3: torch.Size([1, 3, 115, 115])3 , Finished==========Image Shape1: torch.Size([1, 3, 115, 115])Loss: -10.190881Image Shape2: (138, 138, 3)Image Shape3: torch.Size([1, 3, 138, 138])4 , Finished==========Image Shape1: torch.Size([1, 3, 138, 138])Loss: -10.315895Image Shape2: (165, 165, 3)Image Shape3: torch.Size([1, 3, 165, 165])5 , Finished==========Image Shape1: torch.Size([1, 3, 165, 165])Loss: -9.73861Image Shape2: (198, 198, 3)Image Shape3: torch.Size([1, 3, 198, 198])6 , Finished==========Image Shape1: torch.Size([1, 3, 198, 198])Loss: -9.503629Image Shape2: (237, 237, 3)Image Shape3: torch.Size([1, 3, 237, 237])7 , Finished==========Image Shape1: torch.Size([1, 3, 237, 237])Loss: -9.488493Image Shape2: (284, 284, 3)Image Shape3: torch.Size([1, 3, 284, 284])8 , Finished==========Image Shape1: torch.Size([1, 3, 284, 284])Loss: -9.100454Image Shape2: (340, 340, 3)Image Shape3: torch.Size([1, 3, 340, 340])9 , Finished==========Image Shape1: torch.Size([1, 3, 340, 340])Loss: -8.699549Image Shape2: (408, 408, 3)Image Shape3: torch.Size([1, 3, 408, 408])10 , Finished==========Image Shape1: torch.Size([1, 3, 408, 408])Loss: -8.90135Image Shape2: (489, 489, 3)Image Shape3: torch.Size([1, 3, 489, 489])11 , Finished==========Image Shape1: torch.Size([1, 3, 489, 489])Loss: -8.838546Image Shape2: (586, 586, 3)Image Shape3: torch.Size([1, 3, 586, 586])12 , Finished==========Process finished with exit code 0"""得到特征图
网上找个图片测试下,看响应是不是最大
测试图片
import torchfrom torch.autograd import Variablefrom PIL import Image, ImageOpsimport torchvision.transforms as transformsimport torchvision.models as modelsimport numpy as npimport cv2from cv2 import resizefrom matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()size = (224, 224)picture = Image.open("./bird.jpg").convert("RGB")picture = ImageOps.fit(picture, size, Image.ANTIALIAS)loader = transforms.ToTensor()picture = loader(picture).to(device)print(picture.shape)cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1).to(device)picture = (picture-cnn_normalization_mean) / cnn_normalization_stdmodel_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()print(list(model_vgg16.children())[40]) # Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))print(list(model_vgg16.children())[41]) # BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)print(list(model_vgg16.children())[42]) # ReLU(inplace=True)layer = 42filters = 265activations = SaveFeatures(list(model_vgg16.children())[layer])with torch.no_grad():picture_var = Variable(picture[None])model_vgg16(picture_var)activations.close()print(activations.features.shape) # torch.Size([1, 512, 14, 14])# 画出每个 filter 的平均值mean_act = [activations.features[0, i].mean().item() for i in range(activations.features.shape[1])]plt.figure(figsize=(7,5))act = plt.plot(mean_act, linewidth=2.)extraticks = [filters]ax = act[0].axesax.set_xlim(0, 500)plt.axvline(x=filters, color="gray", linestyle="--")ax.set_xlabel("feature map")ax.set_ylabel("mane activation")ax.set_xticks([0, 200, 400] + extraticks)plt.show()"""torch.Size([3, 224, 224])Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)ReLU(inplace=True)torch.Size([1, 512, 14, 14])"""可以看到,265 特征图对该输入的相应最高
总结:实测了其他 layer 和 filter,画出来的直方图中,对应的 filter 相应未必是最高的,不过也很高,可能找的待测图片并不是最贴合设定 layer 的某个 filter 的特征。