当前位置:首页 >> 编程语言 >> 【Python学习】 - sklearn - 用于生成数据的make_blobs模块,尼康s230

【Python学习】 - sklearn - 用于生成数据的make_blobs模块,尼康s230

0evadmin 编程语言 1
文件名:【Python学习】 - sklearn - 用于生成数据的make_blobs模块,尼康s230 【Python学习】 - sklearn - 用于生成数据的make_blobs模块 函数原型:

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)

 

参数含义:

n_samples: int, optional (default=100) The total number of points equally divided among clusters. 待生成的样本的总数。n_features: int, optional (default=2) The number of features for each sample. 每个样本的特征数。centers: int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. 要生成的样本中心(类别)数,或者是确定的中心点。cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. 每个类别的方差,例如我们希望生成2类数据,其中一类比另一类具有更大的方差,可以将cluster_std设置为[1.0,3.0]。center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random.shuffle: boolean, optional (default=True) Shuffle the samples.random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

 

返回值

X : array of shape [n_samples, n_features] The generated samples. 生成的样本数据集。 y : array of shape [n_samples] The integer labels for cluster membership of each sample. 样本数据集的标签。

 

实战代码1: import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfrom sklearn.datasets.samples_generator import make_blobs# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本3个特征,共4个簇X, y = make_blobs(n_samples=10000, n_features=3, centers=[[3,3, 3], [0,0,0], [1,1,1], [2,2,2]], cluster_std=[0.2, 0.1, 0.2, 0.2], random_state =9)fig = plt.figure()ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)plt.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o')plt.show()

输出: 

 

实战代码2: import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets.samples_generator import make_blobsX, y = make_blobs(n_samples=100, n_features=2, centers=4)plt.scatter(X[:, 0], X[:, 1], c='b')plt.show()

输出:

协助本站SEO优化一下,谢谢!
关键词不能为空
同类推荐
«    2025年12月    »
1234567
891011121314
15161718192021
22232425262728
293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接