当前位置:首页 >> 核电技术聚变聚能设备 >> 【Tensorflow】小白入门实战基础篇(下),三星e578

【Tensorflow】小白入门实战基础篇(下),三星e578

cpugpu芯片开发光刻机 核电技术聚变聚能设备 3
文件名:【Tensorflow】小白入门实战基础篇(下),三星e578 【Tensorflow】小白入门实战基础篇(下) import tensorflow as tfimport numpy as npsess = tf.Session()# 一、矩阵运算# div返回的是商的向下取整 数据类型与输入数据类型一致print(sess.run(tf.div(3,4)))# truediv在除法前强制转换整数为浮点数print(sess.run(tf.truediv(3,4)))# 对浮点数进行整数除法,可以使用floordiv()函数。# 注意,此函数也返回浮点数结果,但是其会向下舍去小数位到最近的整数print(sess.run(tf.floordiv(3.0,4.0)))# 另外一个重要的函数是mod()(取模)。此函数返回除法的余数print(sess.run(tf.mod(22.0,5.0)))# 通过cross()函数计算两个张量间的点积。# 记住,点积函数只为三维向量定义,所以cross()函数以两个三维张量作为输入print(sess.run(tf.cross([1.,0.,0.],[0.,1.,0.])))# 二、实现激励函数# 激励函数是神经网络引入的非线性部分,并需要知道在什么位置使用激励函数。# ①如果激励函数的取值范围在0和1之间,比如sigmoid激励函数,# 那计算图输出结果也只能在0到1之间取值。# ②如果激励函数隐藏在节点之间,# 就要意识到激励函数作用于传入的张量的影响。# ③如果张量要缩放为均值为0,# 就需要使用激励函数使得尽可能多的变量在0附近。# 这暗示我们选用(tanh)函数或者softsign函数。# 1. 整流线性单元ReLU=max(0,x)连续但不平滑print(sess.run(tf.nn.relu([-3.,3.,10.])))# [ 0. 3. 10.]# 2. ReLU6=min(max(0,x),6)用来抵消ReLU的线性增长的部分# hard-sigmod函数的变种,运行速度快,解决梯度消失print(sess.run(tf.nn.relu6([-3.,3,10])))# [0. 3. 6.]# 3. sigmod=1/1+(exp(-x))∈[-1,1]是最常用的连续平滑的激励函数也被成为逻辑函数# 由于在机器学习训练过程中反向传播项趋近于0,因此不怎么使用print(sess.run(tf.nn.sigmoid([-1.,0.,1.])))#[0.26894143 0.5 0.7310586 ]# 4. tanh=((exp(x)-exp(-x))/(exp(x)+exp(-x))双曲正切函数∈[0,1]曲线类似于sigmoidprint(sess.run(tf.nn.tanh([-1.,0.,1.])))# 5. softsign=x/(abs(x)+1) 是符号函数的连续估计(-1,1)print(sess.run(tf.nn.softsign([-1.,0.,-1.])))# 6. softplus激励函数是ReLU激励函数的平滑版(0,∞)# 表达式为:log(exp(x)+1)print(sess.run(tf.nn.softplus([-1.,0.,-1.])))# 当输入增加时,softplus激励函数趋近于∞,softsign函数趋近于1;# 当输入减小时,softplus激励函数趋近于0,softsign函数趋近于-1。# 7. ELU激励函数与softplus激励函数相似# 不同点在于:当输入无限小时,ELU激励函数趋近于-1,而softplus激励函数趋近于0# 表达式为(exp(x)+1) if x<0 else xprint(sess.run(tf.nn.elu([-1.,0.,-1.])))# 三、读取数据源# 1.鸢尾花数据集from sklearn import datasetsiris = datasets.load_iris() # 鸢尾花数据集print(len(iris.data)) # 150 特征print(len(iris.target)) # 150 标签print(iris.data[0]) # [5.1 3.5 1.4 0.2]print(set(iris.target)) # {0, 1, 2}# 2.出生体重数据birth_url = 'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'# 3.波士顿房价house_url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'house_header = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV0']# 4. MNIST手写字体库 要科学上网才能访问# from tensorflow.examples.tutorials.mnist import input_data# mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)# print(len(mnist.test.images))# print(len(mnist.train.images))# print(len(mnist.validation.images))# print(mnist.train.labels[1,:])# 5. 电影数据集file_url ='http://www.cs.cornell.edu/people/pabo/movie-review-data/'# 6. 垃圾短信message_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'# 7. 莎士比亚文本数据集text_url = 'http://gutenberg.org/cache/epub/100/pg100.txt'# 8. 翻译样本集sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
协助本站SEO优化一下,谢谢!
关键词不能为空
同类推荐
«    2025年12月    »
1234567
891011121314
15161718192021
22232425262728
293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接