当前位置:首页 >> 核电技术聚变聚能设备 >> 【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据),streak 10 pro

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据),streak 10 pro

cpugpu芯片开发光刻机 核电技术聚变聚能设备 1
文件名:【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据),streak 10 pro 【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果

1.模型原理

梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常是决策树)组合成一个强学习器,以逐步减小预测误差。下面是梯度提升树的模型原理和数学公式的解释。

模型原理:

损失函数(Loss Function): 在梯度提升树中,首先定义一个损失函数,用来衡量模型的预测值与实际值之间的差距。对于分类问题,常用的损失函数包括对数损失(Log Loss)和指数损失(Exponential Loss),而对于回归问题,通常使用均方误差(Mean Squared Error)作为损失函数。

基本模型(Base Learner): 梯度提升树使用决策树作为弱学习器,也可以使用其他

协助本站SEO优化一下,谢谢!
关键词不能为空
同类推荐
«    2025年12月    »
1234567
891011121314
15161718192021
22232425262728
293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接